Small water ice reservoirs dot the Lunar surface by Staff Writers Tucson AZ (SPX) Oct 27, 2020
Small shadowed cold traps scattered across the lunar polar regions could contain up to 20 percent of the frozen water on the Moon, making accessing water sources easier for lunar visitors. "Future lunar rovers may have a hard time driving into a large dark crater with extremely low temperatures. Small cold traps are far more accessible," Planetary Science Institute Senior Scientist Norbert Schorghofer said. "Approximately 10 to 20% of the permanent cold-trap area for water is found to be contained in these micro cold traps. In terms of numbers, most cold traps are smaller than 1 meter." Schorghofer coauthored the new paper "Micro Cold Traps on the Moon" that appears in Nature Astronomy. Assistant Professor Paul O. Hayne of the Laboratory for Atmospheric and Space Physics, and Astrophysical and Planetary Sciences Department, University of Colorado is lead author. Oded Aharonson, a Professor at the Weizmann Institute of Science and PSI Senior Scientist, is also a coauthor. "I think the way this changes our perspective of water on the Moon is that until now, our efforts were focused on the largest reservoirs situated within the broadest and deepest craters at high latitudes. But we now understand that we expect a large number of much smaller reservoirs of water," Aharonson said. "The smaller deposits should be more accessible for at least two reasons: the distance to the nearest one from a hypothetical landing site might be shorter; and the deposit would not be surrounded by imposing tall crater rims, but rather much gentler slopes." The team used theoretical models and diverse data from NASA's Lunar Reconnaissance Orbiter to study shaded areas where water ice could exist on the Moon's surface. "Spacecraft that orbit the Moon provide us with snapshots of the surface at a limited spatial resolution. Anything smaller than that has to be inferred statistically. The closer you look the more cold traps you see," Schorghofer said. "This study combines a suite of data sets with a suite of extrapolation techniques to estimate the actual number and total area of cold traps and permanently shadowed regions over the entire surface of the Moon." For example, the team calculated how the instantaneous shadow in a crater for a given height of the Sun above the horizon is related to the extent of the truly permanent shadow in that crater. They then measured the extent of shadows in thousands of images of the lunar surface for various Sun elevations, and combined the measurements with the geometric factors to estimate the total area in permanent shadow. They also calculated the temperatures of these areas to predict in which one's ice can accumulate. "Accessing water ice deposits on the Moon is enticing for scientific as well as practical reasons: we wish to investigate the chemistry and history of this important material, and we hope to mine it for human utilization. Together with energy from the Sun or another source, frozen ice may be converted to liquid water or even to hydrogen fuel," Aharonson said.
Research Report: "Micro Cold Traps on the Moon"
NASA, Human Lunar Lander Companies Complete Key Artemis Milestone Washington DC (SPX) Oct 23, 2020 NASA's Human Landing System (HLS) Program recently checked off a key milestone in its progress toward landing the first woman and the next man on the Moon by 2024. The HLS Program conducted Certification Baseline Reviews (CBR) with the three U.S. companies competing to provide landers that will deliver Artemis astronauts to the Moon. These virtual meetings were the culmination of critical work by NASA and the companies since NASA announced the base period selections in April. Since then, NASA ha ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |