Moon News  
MOON DAILY
Robotics team practises lunar exploration on Mount Etna
by Staff Writers
Berlin, Germany (SPX) Jul 01, 2022

The LRU2 robot at work. Additional images of other robots used in the study can be viewed here at DLR

Robots can enter areas that are dangerous for or inaccessible to humans. They can even explore other planets - or the Moon. This has now been demonstrated on Mount Etna, a volcano in Italy. Various robots completed their tasks independently - they took rock samples, analysed them and forwarded the results to their control centre. Two other scenarios were demonstrated in addition to this mission, which was named 'Geological Mission I'.

These complete the Helmholtz Future Project Autonomous Robotic Networks to Help Modern Societies (ARCHES). The German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) led the project. The lava landscape on the Sicilian volcano Mount Etna resembles the surface of the Moon, so it is well suited to serve as a test environment. In addition to the loose, coarse-grained surface composition, the solidified lava layers also present realistic challenges for exploration missions.

"Teams of mobile robots have an important role to play in future space missions. Operating in heterogeneous teams, the robots complement and support each other with their different capabilities. They serve as an extension of human arms and eyes," explains Armin Wedler, Project Manager at the DLR Institute of Robotics and Mechatronics.

In 'Geological Mission I', two robots moved around together autonomously. They were joined by a drone. The Lightweight Rover Unit 1 (LRU1) robot evaluated soil samples using its cameras and is considered the 'scientist' of the team. LRU2 took on the role of 'assistant', collecting surface samples and analysing them using Laser-Induced Breakdown Spectroscopy (LIBS).

This technique directs a powerful, pulsed laser beam onto the sample. The material partially vaporises, allowing LIBS to detect different elements in the resulting plasma. LIBS was developed by the DLR Institute of Optical Sensor Systems. LRU2 also transports storage containers, has space for tools and ensures that LRU1 always has WiFi. The ARDEA drone is considered the 'scout' for the team and mapped the area. Due to the strong winds that were present on Etna at times, the capabilities of ARDEA and LIBS could not be used on all experiment iterations.

The three scenarios are based on different overall conditions
'Geological Mission I' was based on a concept in which scientists monitor the tasks of the robots from Earth. 'Geological Mission II', which also took place on Mount Etna, is different, as in this case the robots would be controlled from a station in orbit. In addition to LRU1 and LRU2, the Interact rover collected rock samples and brought them to a lander. The Interact Rover has a camera arm and a gripper arm that also provide haptic feedback.

This means that the remote scientists can obtain a tactile 'feel' for the rock samples. The Karlsruhe Institute of Technology (KIT) has developed a robotic arm with a hand as a haptic human-machine interface. The fourth robot - the Scout rover - is equipped with a WiFi repeater and positions itself so that Interact has a continuous connection to the control room. In 'Geological Mission II' the robots do not work autonomously but are guided by an astronaut.

During the demonstration mission, German astronaut Thomas Reiter carried out this task from a special control room in Catania, about 23 kilometres away. 'Geological Mission II' also marks the conclusion of the European Space Agency (ESA) 'Analog-1' campaign.

In 2019, ESA astronaut Luca Parmitano controlled the Interact rover from the International Space Station (ISS) in a simulated lunar environment in the Netherlands as part of the 'Analog-1' campaign. "We have gained a lot of experience that will help us in the development of future missions. In addition to ongoing projects, we are very much looking forward to further collaboration in robotics, which will build on the findings from ARCHES," says Thomas Kruger from ESA's Human Robot Interaction Lab.

Antenna for the far side of the Moon
The third scenario, the 'LOFAR Experiment', involved simulating the installation and maintenance of a low-frequency radio antenna array. The LRU rover and the ARDEA drone demonstrated the installation of an antenna system on the far side of the Moon. A similar antenna could be directed from the lunar surface into deep space.


Related Links
DLR Institute of Robotics and Mechatronics
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MOON DAILY
CAPSTONE Uses Gravity on Unusual, Efficient Route to the Moon
Moffett Field CA (SPX) Jun 28, 2022
A microwave oven-sized CubeSat dubbed CAPSTONE will blaze an untested, unusual yet efficient deep space route to the Moon that NASA is greatly interested in and future spacecraft may want to imitate. The destination for CAPSTONE - short for the Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment - is a unique lunar orbit intended for?NASA's?Gateway, a multipurpose outpost that will provide essential support for long-term astronaut lunar missions as part of the Ar ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MOON DAILY
Eyeing Kukenan - Sols 3519-3524

My Favorite Martian Image: 'Enchanted' Rocks at Jezero Crater

Historic Mars mission completes all preset tasks

Help NASA scientists find clouds on Mars

MOON DAILY
SwRI researcher shows how elliptical craters could shed light on age of Saturn's moons

Scientists model landscape formation on Titan, revealing an Earth-like alien world

MOON DAILY
You can help scientists study the atmosphere on Jupiter

SwRI scientists identify a possible source for Charon's red cap

NASA's Europa Clipper Mission Completes Main Body of the Spacecraft

Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors

MOON DAILY
NASA program brings big benefits to Big Ten School

Rocket Lab's Lunar Photon completes 6th orbital raise preps for final Earth-escape burn

Rocket Lab's Lunar Photon completes 3rd orbit raising maneuver for CAPSTONE Moon mission

How scientist proposed a novel Kalman filter for target tracking in space

MOON DAILY
A mirror tracks a tiny particle

New silicon nanowires can really take the heat

Cooling speeds up electrons in bacterial nanowires

Seeing more deeply into nanomaterials

MOON DAILY
Virgin Orbit launches 'Straight Up' mission for US Space Force

Relativity and Oneweb sign multi-launch agreement for Terran R

NASA, SpaceX target new launch date for commercial cargo mission

Virgin Orbit mission success brings UK launch another step closer

MOON DAILY
Shenzhou XIII astronauts doing well after returning to Earth

Chinese official says its Mars sample mission will beat NASA back to Earth

China's deep space exploration laboratory starts operation

Shenzhou XIV taikonauts to conduct 24 medical experiments in space

MOON DAILY
Turion Space and Exolaunch announce launch agreement for DROID 001 aboard Falcon 9

Sidus Space marks successful space-qualification of Dhruva space's satellite orbital deployer

ICEYE expands its business to offer complete satellite missions for customers

Automation and advanced materials are the "dream team"









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.