Planetary scientists find evidence of solar-driven change on the Moon by Staff Writers Flagstaff AZ (SPX) Aug 23, 2021
Tiny iron nanoparticles unlike any found naturally on Earth are nearly everywhere on the Moon-and scientists are trying to understand why. A new study led by Northern Arizona University doctoral candidate Christian J. Tai Udovicic, in collaboration with associate professor Christopher Edwards, both of NAU's Department of Astronomy and Planetary Science, uncovered important clues to help understand the surprisingly active lunar surface. In an article recently published in Geophysical Research Letters, the scientists found that solar radiation could be a more important source of lunar iron nanoparticles than previously thought. Asteroid impacts and solar radiation affect the Moon in unique ways because it lacks the protective magnetic field and atmosphere that protect us here on Earth. Both asteroids and solar radiation break down lunar rocks and soil, forming iron nanoparticles (some smaller, some larger) that are detectable from instruments on satellites orbiting the Moon. The study used data from National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) spacecraft to understand how quickly iron nanoparticles form on the Moon over time. "We have thought for a long time that the solar wind has a small effect on lunar surface evolution, when in fact it may be the most important process producing iron nanoparticles," Tai Udovicic said. "Since iron absorbs a lot of light, very small amounts of these particles can be detected from very far away - making them a great indicator of change on the Moon". Surprisingly, the smaller iron nanoparticles seemed to form at a similar rate as radiation damage in samples returned from the Apollo missions to the Moon, a hint that the Sun has a strong influence in their formation. "When I saw the Apollo sample data and our satellite data side by side for the first time, I was shocked," Tai Udovicic said. "This study shows that the solar radiation could have a much larger influence in active change on the Moon than previously thought, not only darkening its surface, but it might also create small quantities of water usable in future missions." As NASA prepares to land the first w oman and the next man on the surface of the Moon by 2024 as part of the Artemis mission, understanding the solar radiation environment and possible resources on the Moon are critical. In future work recently awarded a NASA Future Investigators in Space Science and Technology (FINESST) grant, Tai Udovicic plans to broaden his targeted study to the entire Moon, but is also eager to take a closer look at mysterious lunar swirls, one of which was recently selected as a landing site for the upcoming Lunar Vertex rover. He also studies lunar temperatures and water ice stability to inform future missions. "This work helps us understand, from a bird's eye view, how the lunar surface changes over time," said Tai Udovicic. "While there is still a lot to learn, we want to make sure that when we have boots back on the Moon, that those missions are backed by the best science available. It's the most exciting time to be a lunar scientist since the tail end of the Apollo era in the 70s."
NASA benefits from Lunar surface simulant testing Kennedy Space Center FL (SPX) Aug 18, 2021 To safely reach the Moon, a lunar lander must fire its rocket engines to decelerate the spacecraft for a soft touchdown. During this process, the engine exhaust stirs up regolith - the dust and rocks on the lunar surface - creating a host of potential challenges, from destabilizing the lander to damaging instruments and reducing visibility. To dig into this problem, a team from NASA's Kennedy Space Center in Florida is preparing 16 tons of a regolith simulant called Black Point-1 (BP-1) for use in ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |