Moon News  
MOON DAILY
Peering into the Moon's shadows with AI
by Staff Writers
Katlenburg-Lindau, Germany (SPX) Sep 24, 2021

The 17 newly studied craters and depressions are located near the South Pole. While the smallest of these regions (region 11) has a size of only 0.18 square kilometers, the largest (region 9) measures 54 square kilometers. Region 9 is not located in the section of the south polar region shown here, but a bit further to the North, in Schrodinger Basin. The representations of the lunar surface shown here are based on altimeter data from the Lunar Reconnaissance Orbiter.

The Moon is a cold, dry desert. Unlike the Earth, it is not surrounded by a protective atmosphere and water which existed during the Moon's formation has long since evaporated under the influence of solar radiation and escaped into space. Nevertheless, craters and depressions in the polar regions give some reason to hope for limited water resources. Scientists from MPS, the University of Oxford and the NASA Ames Research Center have now taken a closer look at some of these regions.

"Near the lunar north and south poles, the incident sunlight enters the craters and depressions at a very shallow angle and never reaches some of their floors", MPS-scientist Dr. Valentin Bickel, first author of the new paper, explains. In this "eternal night," temperatures in some places are so cold that frozen water is expected to have lasted for millions of years.

Impacts from comets or asteroids could have delivered it, or it could have been outgassed by volcanic eruptions, or formed by the interaction of the surface with the solar wind. Measurements of neutron flux and infrared radiation obtained by space probes in recent years indicate the presence of water in these regions.

Eventually, NASA's Lunar Crater Observation and Sensing Satellite (LCROSS) provided direct proof: twelve years ago, the probe fired a projectile into the shadowed south pole crater Cabeus. As later analysis showed, the dust cloud emitted into space contained a considerable amount of water.

However, permanently shadowed regions are not only of scientific interest. If humans are to ever spend extended periods of time on the Moon, naturally occurring water will be a valuable resource - and shadowed craters and depressions will be an important destination.

NASA's uncrewed VIPER rover, for example, will explore the South Pole region in 2023 and enter such craters. In order to get a precise picture of their topography and geology in advance - for mission planning purposes, for example - images from space probes are indispensable. NASA's Lunar Reconnaissance Orbiter (LRO) has been providing such images since 2009.

However, capturing images within the deep darkness of permanently shadowed regions is exceptionally difficult; after all, the only sources of light are scattered light, such as that reflecting off the Earth and the surrounding topography, and faint starlight.

"Because the spacecraft is in motion, the LRO images are completely blurred at long exposure times," explains Ben Moseley of the University of Oxford, a co-author of the study. At short exposure times, the spatial resolution is much better. However, due to the small amounts of light available, these images are dominated by noise, making it hard to distinguish real geological features.

To address this problem, the researchers have developed a machine learning algorithm called HORUS (Hyper-effective nOise Removal U-net Software) that "cleans up" such noisy images. It uses more than 70,000 LRO calibration images taken on the dark side of the Moon as well as information about camera temperature and the spacecraft's trajectory to distinguish which structures in the image are artifacts and which are real. This way, the researchers can achieve a resolution of about 1-2 meters per pixel, which is five to ten times higher than the resolution of all previously available images.

Using this method, the researchers have now re-evaluated images of 17 shadowed regions from the lunar south pole region which measure between 0.18 and 54 square kilometers in size. In the resulting images, small geological structures only a few meters across can be discerned much more clearly than before. These structures include boulders or very small craters, which can be found everywhere on the lunar surface. Since the Moon has no atmosphere, very small meteorites repeatedly fall onto its surface and create such mini-craters.

"With the help of the new HORUS images, it is now possible to understand the geology of lunar shadowed regions much better than before," explains Moseley. For example, the number and shape of the small craters provide information about the age and composition of the surface. It also makes it easier to identify potential obstacles and hazards for rovers or astronauts. In one of the studied craters, located on the Leibnitz Plateau, the researchers discovered a strikingly bright mini-crater.

"Its comparatively bright color may indicate that this crater is relatively young," says Bickel. Because such a fresh scar provides fairly unhindered insight into deeper layers, this site could be an interesting target for future missions, the researchers suggest.

The new images do not provide evidence of frozen water on the surface, such as bright patches. "Some of the regions we've targeted might be slightly too warm," Bickel speculates. It is likely that lunar water does not exist as a clearly visible deposit on the surface at all - instead, it could be intermixed with the regolith and dust, or may be hidden underground.

To address this and other questions, the researchers' next step is to use HORUS to study as many shadowed regions as possible. "In the current publication, we wanted to show what our algorithm can do. Now we want to apply it as comprehensively as possible," says Bickel.

This work has been enabled by the Frontier Development Lab (FDL.ai). FDL is a co-operative agreement between NASA, the SETI Institute (seti.org) and Trillium Technologies Inc, in partnership with the Luxembourg Space Agency and Google Cloud.

Research Report: "Peering into lunar permanently shadowed regions with deep learning"


Related Links
Max Planck Institute for Solar System Research
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MOON DAILY
Dynetics selected to build NASA's sustainable lunar lander
Huntsville AL (SPX) Sep 20, 2021
Dynetics, a wholly owned subsidiary of Leidos, has been selected to help NASA enable a steady pace of crewed trips to the Moon's surface as part of the Artemis program's Next Space Technologies for Exploration Partnerships (NextSTEP-2) Appendix N. As one of five companies selected for a firm fixed-price, milestone-based contract, Dynetics will receive an initial award of $40.8 million over the next 15 months to make advancements toward sustainable human landing system (HLS) concepts. Dynetics will ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MOON DAILY
NASA offers new website to look at Mars rover images

Mars habitability limited by its small size, isotope study suggests

Carbon dioxide reactor makes Martian fuel

Small stature limits Mars' ability to hold water, study finds

MOON DAILY
Titan-in-a-glass experiments hint at mineral makeup of Saturn moon

Saturn makes waves in its own rings

Dragonfly mission to Titan announces big science goals

Icequakes likely rumble along geyser-spitting fractures in Saturn's icy moon Enceladus

MOON DAILY
Come on in, the water is superionic

Mushballs stash away missing ammonia at Uranus and Neptune

A few steps closer to Europa: spacecraft hardware makes headway

Juno joins Japan's Hisaki satellite and Keck Observatory to solve "energy crisis" on Jupiter

MOON DAILY
All-female crew in water-tank spaceflight study

Blue Origin unveils next flight, TMZ says Captain Kirk to be aboard

US must prepare now to replace International Space Station

Russian Gov't allocates $60Mln to build Soyuz for tourist flights

MOON DAILY
Striking Gold: A Pathway to Stable, High-Activity Catalysts from Gold Nanoclusters

Tracking the movement of a single nanoparticle

Researchers demonstrate technique for recycling nanowires in electronics

Custom-made MIT tool probes materials at the nanoscale

MOON DAILY
Glasgow Prestwick Spaceport announces Launch Partner

NASA to launch climate change-tracking Landsat 9 satellite

DLR is developing a Launch Coordination Center

Solar electric propulsion makes Psyche spacecraft go

MOON DAILY
China's cargo craft docks with space station core module

China brings astronauts back, advances closer to "space station era"

Chinese astronauts return to Earth after 90-day mission

China prepares to launch Tianzhou-3 cargo spacecraft

MOON DAILY
NASA adviser blasts lack of congressional action on space traffic dangers

Nine ways AR and VR used on the International Space Station

Chinese game makers vow to cut effeminacy, limit underage players

Engineering researchers develop new explanation for formation of vortices in 2D superfluid









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.