Moon News  
MOON DAILY
New tests evaluate mission readiness of astronauts upon landing
by Mohi Kumar and Jennifer L. Turner | Human Research Program
Houston TX (SPX) Apr 14, 2022

A volunteer from NASA's Artemis Extravehicular Activity training group moves a 30-pound object through a boulder field while in a spacesuit connected to NASA's Active Response Gravity Offload System, or ARGOS. He is conducting a trial run through an obstacle course while ARGOS lifts him and the suit in a way that simulates gravity similar to that on Mars. Some astronauts will work through this obstacle course immediately after returning to Earth so that researchers can learn more about how mission-ready crew can be after landing on a planet's surface.

Have you ever felt off-balance after being on amusement rides or gotten motion sickness on a boat? Astronauts feel something similar that can be more intense when they return to Earth from space.

Once they land, their whole body - including muscles, bones, inner ear, and organs - starts readjusting to Earth's gravity. Astronauts often report feeling dizzy, lightheaded, nauseated, and off-balance upon their return. These symptoms can last for several days, until they get their "land legs."

While much work is spent ensuring astronauts' good health upon reentry to Earth, a group of scientists at NASA's Human Research Program, or HRP, are focusing on something slightly different. They're interested in determining how soon after landing astronauts can perform mission-critical tasks.

"Through Artemis, NASA will soon send the first woman, the first person of color, and other crew members to the Moon's surface. And after that, our eyes will be on Mars," explains Jason Norcross, a scientist who studies human performance at NASA's Johnson Space Center in Houston. On Mars and the Moon, crew members will need to be ready to act without much feedback from operators on Earth, particularly in emergency scenarios, he notes. "So we need to know: Right after astronauts land on a planetary surface, what can they physically do? How long after landing should they wait to perform certain tasks?"

To help answer these questions, Norcross and a combined team from NASA's Human Physiology, Performance, Protection and Operations Laboratory and NASA's Neurosciences Laboratory designed an obstacle course for astronauts volunteering from NASA's SpaceX Crew-2 and Crew-3 missions to navigate. Before departing to the International Space Station, these crew ran through two sets of tasks: emerging from a mock landing capsule and a simulated spacewalk on a planetary surface while wearing a spacesuit. Then, immediately upon returning to Earth, the same crew will attempt to complete these same tasks - the simulated capsule exit a few hours after landing, and the practice planetary spacewalk about a day later.

For the first task, researchers spent months developing a mockup made of lightweight metal tubing that, when deployed, forms the outline of a space capsule. This portable frame fits inside a large backpack. At an airport close to where the Crew Dragon capsule splashes down, the team will set up the mock capsule. Each astronaut will enter, lie down, and the test will begin.

During the test, the astronaut stands up and - while keeping in mind the mock capsule's boundaries - unfurls a ladder from the capsule's top. They will then secure the ladder tightly, grab a survival pack, climb the ladder, and - through a hatch at the capsule's top - hand off the survival pack to a researcher standing nearby. Finally, the astronaut will descend the ladder, walk about 25 feet away, and return back to where they started.

"In the preflight test, an astronaut can stand up, climb the ladder, and walk easily. A couple of minutes and they're done with this whole task," notes Norcross. "But post-flight, we expect that will be completely different. Astronauts may have to stop, regain their balance, catch their breath, take breaks, maybe even take a moment to be sick. It could be a struggle."

The task involves several posture changes, such as head-turning and standing up after lying down. "Those shifts in posture are the hardest things for crew to do immediately after landing," he adds. "We need to know - can this even be done? We think it can be, but then again, we've never assessed astronauts doing this particular task at this particular time before."

The second task - the simulated planetary walk - will take place after astronauts have flown back to NASA's Johnson Space Center in Houston. Once there, they'll each take turns completing a different set of challenges. First, they'll try to don their spacesuit unassisted. Then, researchers will connect the suit into NASA's Active Response Gravity Offload System, or ARGOS - a machine that hoists the suit and pressurizes it, allowing the astronaut inside to experience a fraction of Earth's gravity. For this test, ARGOS will be tuned to the gravity on Mars, which is roughly three-eighths of Earth's gravity.

Next, after they get their bearings and establish they can walk, the astronaut will climb a ladder, fit themselves through an opening, and climb down that same ladder. At that ladder's base, they'll connect "supply lines" - in this case, large flexible tubes - to a mockup of a life-support module. "We want astronauts to simulate what could happen on a mission off-world," Norcross notes. "We've got connections down low and we've got things where they're reaching up overhead."

Finally, they'll see if they can repeatedly move a couple of 30-pound objects from one end of a boulder field to the other. These objects are moderately bulky - about the size of a five-gallon water cooler jug. "Again, we're trying to make them do realistic tasks, but giving them challenging postures to see what's possible so soon after landing," Norcross continues.

For both tasks, astronauts will give verbal feedback to researchers as they progress. After they complete the tasks, crew will take surveys about their exertions through each step. During the simulated walk on Mars, astronauts will wear sensors to monitor heart rate and energy expenditures. In addition, the astronauts will be recorded on video as they go through both tasks. Comparing the videos before launch to the ones immediately after landing will help scientists pinpoint where and perhaps why crew members struggled.

Future iterations will include more participants, more complex and longer tasks, and simulations programmed for the Moon's gravity. Information gained will help NASA design mission activities, emergency protocols, spacesuits, and capsules that minimize difficult tasks in the first few days after astronauts land on the Moon or Mars.


Related Links
NASA Human Research Program
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MOON DAILY
ESA astronaut performs simulated polar Moon landing
Paris (ESA) Apr 08, 2022
Side-lit by the Sun, its heavily cratered surface mired in shadow, the south pole of the Moon represents a highly challenging lunar landing target. Italian ESA astronaut Roberto Vittori took to an advanced flight simulator to try out a mock polar touchdown as part of a project to design a 'human-in-the-loop' lunar landing system. The ESA-led 'Human-In-the-Loop Flight Vehicle Engineering' technology study investigated the added performance benefit offered by human oversight of lunar landings to imp ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MOON DAILY
Digging into drill data takes perseverance

NASA and UAE to share Mars mission datasets

Perseverance at the Delta

Sols 3446-3448: Weekend workload

MOON DAILY
On icy moon Enceladus, expansion cracks let inner ocean boil out

Saturn's High-Altitude Winds Generate Extraordinary Aurorae, Study Finds

MOON DAILY
Water on Jupiter's moon closer to surface than thought: study

Abundant features on Europa bodes well for search for extraterrestrial life

Jupiter's moon has splendid dunes

Four billion-year-old relic from early solar system heading our way

MOON DAILY
Report identifies priority planetary science mission and planetary defense efforts as strategic investments

NASA sets coverage for Russian spacewalks

Artemis astronauts will ride in style in new crew transportation vehicles

Russian cosmonauts activate robotic arm on ISS during spacewalk

MOON DAILY
Seeing more deeply into nanomaterials

Atom by atom: building precise smaller nanoparticles with templates

Ring my string: Building silicon nano-strings

Nanotube films open up new prospects for electronics

MOON DAILY
NASA builds welding test article for SLS Exploration Upper Stage

Small spacecraft electric propulsion opens new deep space opportunities

Rocket Lab secures multi-launch contract with HawkEye 360

SpaceX launches second U.S. reconnaissance satellite on Falcon 9 rocket

MOON DAILY
China reveals missions of Shenzhou-14, Shenzhou-15 space crews

Core module of China's space station achieves anticipated goal

Shenzhou XIII mission a success in testing tech for space station

Three Chinese astronauts return to Earth after six months in space

MOON DAILY
Kleos' first two Patrol satellites deployed from D-Orbit Transfer vehicle

Kamala Harris announces U.S. ban on anti-satellite missile tests

ReOrbit and TransAstra sign spacecraft development and logistics contracts

Scientists have improved the composition of radiation protection glasses









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.