'Moon landing' performed with DLR Robotic Motion Simulator by Staff Writers Oberpfaffenhofen, Germany (SPX) Apr 08, 2022
How will astronauts land safely on the Moon in the future? A seamless interaction between pilot and spacecraft is crucial to ensuring a successful Moon landing. Together with partners from industry and research, the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) has conducted a special experiment. European Space Agency (ESA) astronaut and test pilot Roberto Vittori has tested various lunar landing manoeuvres for the first time during a fully mobile simulation in the flight deck of the 'DLR Robotic Motion Simulator'.
ESA astronaut Roberto Vittori tests manoeuvres In one test scenario, the auto pilot was set to land in a landing zone with boulders. Vittori was able to intervene within a given time window and select an alternative landing site free of boulders via touch screens. In another scenario, the autopilot experienced a technical fault. Here, the Italian astronaut was able to switch to fully manual control and successfully pilot the module manually as it descended onto the lunar surface.
Human-machine cooperation The DLR Robotic Motion Simulator is based on an industrial robot arm with a flight deck capsule attached to the end. The system is highly customisable and has a particularly large available workspace. In contrast to classic mobile flight simulators, the DLR Robotic Motion Simulator makes it possible to achieve extreme tilt angles and manoeuvres. "It was a beautiful run," said ESA astronaut Roberto Vittorio, stressing the intuitive feeling for motion the simulation system gave him. "The simulator is an incredible machine, probably one of the best I have experienced. This experiment is for me showing that Europe can play a key role in the future of exploration." For this experiment, the DLR team equipped the capsule with touch screens, new input devices for the astronaut and a virtual flight deck window. The researchers also developed a high-resolution lunar visualisation that allowed the manoeuvres of the lunar module to be observed on a large screen outside the simulator.
Intuitive, realistic control After the series of experiments was completed, the Italian ESA astronaut Vittori was extremely impressed by the facility in Oberpfaffenhofen and emphasised that the motion simulation gave him an intuitive feeling for the lander, which allowed him to control the lunar module in a realistic way. ESA project manager Luca Ferracina commented: "The experiment has clearly shown that the DLR Robotic Motion Simulator is very suitable for conducting this type of tests."
ESA astronaut performs simulated polar Moon landing Paris (ESA) Apr 08, 2022 Side-lit by the Sun, its heavily cratered surface mired in shadow, the south pole of the Moon represents a highly challenging lunar landing target. Italian ESA astronaut Roberto Vittori took to an advanced flight simulator to try out a mock polar touchdown as part of a project to design a 'human-in-the-loop' lunar landing system. The ESA-led 'Human-In-the-Loop Flight Vehicle Engineering' technology study investigated the added performance benefit offered by human oversight of lunar landings to imp ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |