Moon News  
MOON DAILY
Life support cooked up from lunar rocks
by Staff Writers
Paris, France (SPX) Sep 24, 2021

File image of lunar regolith simulant.

Engineers have successfully shown how water and oxygen can be extracted by cooking up lunar soil, in order to support future Moon bases. A laboratory demonstrator, developed by a consortium of the Politecnico Milano, the European Space Agency, the Italian Space Agency and the OHB Group, is presented this week at the Europlanet Science Congress (EPSC) 2021.

The set-up uses a two-step process, well known in industrial chemistry for terrestrial applications, that has been customised to work with a mineral mixture that mimics the lunar soil. Around 50% of lunar soil in all regions of the Moon is made up of silicon or iron oxides, and these in turn are around 26% oxygen. This means that a system that efficiently extracts oxygen from the soil could operate at any landing site or installation on the Moon.

In the experimental set-up, the soil simulant is vaporised in the presence of hydrogen and methane, then "washed" with hydrogen gas. Heated by a furnace to temperatures of around 1000 degrees Celsius, the minerals turn directly from a solid to a gas, missing out a molten phase, which reduces the complexity of the technology needed. Gases produced and residual methane are sent to a catalytic converter and a condenser that separates out water. Oxygen can then be extracted through electrolysis. By-products of methane and hydrogen are recycled in the system.

"Our experiments show that the rig is scalable and can operate in an almost completely self-sustained closed loop, without the need for human intervention and without getting clogged up," said Prof Michele Lavagna, of the Politecnico Milano, who led the experiments.

To accurately understand the process and prepare the technology needed for a flight test, experiments have been carried out to optimise the temperature of the furnace, the length and frequency of the washing phases, the ratio of the mixtures of gases, and the mass of the soil simulant batches. Results show that yield is maximised by processing the soil simulant in small batches, at the highest temperatures possible and using long washing phases.

The solid by-product is rich in silica and metals that can undergo further processing for other resources useful for in-situ exploration of the Moon.

'The capability of having efficient water and oxygen production facilities on site is fundamental for human exploration and to run high quality science directly on the Moon,' said Lavagna. 'These laboratory experiments have deepened our understanding of each step in the process. It is not the end of the story, but it's very a good starting point.'

Research Report: "Water production from lunar regolith through carbothermal reduction modelling through ground experiments"


Related Links
Europlanet
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MOON DAILY
Dynetics selected to build NASA's sustainable lunar lander
Huntsville AL (SPX) Sep 20, 2021
Dynetics, a wholly owned subsidiary of Leidos, has been selected to help NASA enable a steady pace of crewed trips to the Moon's surface as part of the Artemis program's Next Space Technologies for Exploration Partnerships (NextSTEP-2) Appendix N. As one of five companies selected for a firm fixed-price, milestone-based contract, Dynetics will receive an initial award of $40.8 million over the next 15 months to make advancements toward sustainable human landing system (HLS) concepts. Dynetics will ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MOON DAILY
NASA offers new website to look at Mars rover images

Mars habitability limited by its small size, isotope study suggests

Carbon dioxide reactor makes Martian fuel

Small stature limits Mars' ability to hold water, study finds

MOON DAILY
Titan-in-a-glass experiments hint at mineral makeup of Saturn moon

Saturn makes waves in its own rings

Dragonfly mission to Titan announces big science goals

Icequakes likely rumble along geyser-spitting fractures in Saturn's icy moon Enceladus

MOON DAILY
Come on in, the water is superionic

Mushballs stash away missing ammonia at Uranus and Neptune

A few steps closer to Europa: spacecraft hardware makes headway

Juno joins Japan's Hisaki satellite and Keck Observatory to solve "energy crisis" on Jupiter

MOON DAILY
All-female crew in water-tank spaceflight study

Blue Origin unveils next flight, TMZ says Captain Kirk to be aboard

US must prepare now to replace International Space Station

Russian Gov't allocates $60Mln to build Soyuz for tourist flights

MOON DAILY
Striking Gold: A Pathway to Stable, High-Activity Catalysts from Gold Nanoclusters

Tracking the movement of a single nanoparticle

Researchers demonstrate technique for recycling nanowires in electronics

Custom-made MIT tool probes materials at the nanoscale

MOON DAILY
Glasgow Prestwick Spaceport announces Launch Partner

NASA to launch climate change-tracking Landsat 9 satellite

DLR is developing a Launch Coordination Center

Solar electric propulsion makes Psyche spacecraft go

MOON DAILY
China's cargo craft docks with space station core module

China brings astronauts back, advances closer to "space station era"

Chinese astronauts return to Earth after 90-day mission

China prepares to launch Tianzhou-3 cargo spacecraft

MOON DAILY
NASA adviser blasts lack of congressional action on space traffic dangers

Nine ways AR and VR used on the International Space Station

Chinese game makers vow to cut effeminacy, limit underage players

Engineering researchers develop new explanation for formation of vortices in 2D superfluid









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.