Moon News  
How SMART-1 Has Made European Space Exploration Smarter

SMART-1 first orbits the Earth in ever-increasing ellipses. When it reaches the Moon, its orbit is altered by the Moon's gravitational field. It uses a number of these lunar 'gravity assist' manoeuvres to position itself for entering orbit around the Moon. Credits: AOES Medialab, ESA 2002.
by Staff Writers
Paris, France (ESA) Feb 01, 2007
A unique way to travel to the Moon, new technologies successfully tested and brand-new science: a few months after the end of the SMART-1 mission scientists and engineers gathered to recap on these and all the other achievements of the first European mission to the Moon.

The innovative SMART-1 Moon mission has taught ESA, European space industry and institutes a lot about how to perform its missions even more efficiently. For example, the operational tools developed and the lessons learned are already being used on ESA missions such as Rosetta and Venus Express. The SMART-1 experience has also been used to prepare future ESA missions, such as Bepi-Colombo, which will visit the inner planet Mercury.

Between 16-17 January 2007, engineers and scientists met at ESA's space technology centre, ESTEC, in the Netherlands, to discuss the success of SMART-1 and how to apply the achievements to current and future missions.

"SMART-1 proved that, with a sense of innovation and commitment, Europe can perform highly complex missions efficiently," says Bernard Foing, SMART-1's project scientist. "From the start it was designed to both test new technologies and perform useful science," he says.

Ten years ago, he began designing the mission with Giuseppe Racca, SMART-1's Project Manager. "SMART-1 was new and unique. We demonstrated innovative technologies for spacecraft and instruments," says Racca.

Perhaps the most obvious new technology was the way SMART-1 travelled to the Moon. SMART-1's electric propulsion system applied a small thrust over a long period. Although this meant that SMART-1 took 13.5 months to reach the Moon, plus an extra 4 months to reach its working science orbit, for deep space missions electric propulsion is more efficient than traditional rockets, in terms of flight time.

"SMART-1 will open the door for new missions because electric propulsion makes it possible to transport more instruments, with lower propellant mass, on affordable rockets with more flexible launch and navigation constraints, in shorter periods of time," says Giorgio Saccoccia, ESA's Head of Propulsion Division.

Using electric propulsion, ESA can send Bepi-Colombo to Mercury in just six years, whereas traditional rockets would take at least seven. Electric propulsion will also be able to transport much more scientific equipment to Mercury than a traditional spacecraft. "With SMART-1, we learned how to drive an electric propulsion spacecraft," says Foing.

"With SMART-1 some dreams became reality. Budget and time pressure originated innovation in spite of the low cost of the mission", says Octavio Camino, Smart-1 Operations Manager at ESOC, "SMART-1 allowed us to test new concepts relevant for future ESA infrastructure for operations automation".

The SMART-1 team also found out how to squeeze the most out of scientific instruments. Originally, the team had planned to take four images per 14.5-hour orbit with the SMART-1 camera, AMIE. As the mission progressed, the team lowered the orbit of SMART-1, so that it circled the Moon in just five hours.

This meant that they had to reprogram the camera to work much faster, as the lunar surface was now rushing by below. In the end, AMIE was supplying 100 images per orbit. The software tools they developed, to schedule this massive upgrade in usage, are now being employed on Venus Express and Rosetta.

The flood of image data has allowed the teams to construct highly detailed maps of the lunar surface. "We have already used the maps to identify possible landing sites for future landers, rovers and even manned bases," says Foing.

Even the instruments on SMART-1 were special. They were miniaturized to be ten times lighter than their traditional counterparts. The camera weighed just 2 kilograms. As a result, two of the instruments (D-CIXS and SIR), which mapped the Moon's elemental composition and minerals, are being upgraded and rebuilt to fly on the 2008 Indian Moon mission Chandrayaan-1.

Whilst the SMART-1 mission is over, Foing thinks there is no room for complacency. He describes the mission as 'a bridge to the future' and says, "We cannot rest on our laurels. By analysing data and lessons learned, we have to carry the SMART-1 legacy forward."

Email This Article

Related Links
SMART-1
Lunar Dreams and more
Mars News and Information at MarsDaily.com
Lunar Dreams and more

The Moon Is A Harsh Witness
Huntsville AL (SPX) Jan 29, 2007
With binoculars, examine the rugged face of the Moon. It is pocked with thousands of impact craters from interplanetary asteroids and comets. Ever wonder why Earth, a much bigger target, apparently has so few craters? They're so rare that a pristine example, the Barringer Meteor Crater in Arizona, is actually a tourist attraction. Did Earth just get lucky and dodge the heavy artillery?







  • Chance For European Student To Join The NASA 2007 Summer Academy
  • Personal Digital Assistants In Space
  • Lift-Off For Space Tourism In Sweden
  • Christer Fuglesang Reflects On His Successful Mission

  • Martian Clouds Pass By On A Winter Afternoon
  • Dig Deeply To Seek Life On Mars
  • Opportunity Hones Reckoning Skills And Tests Computer Smarts
  • Ongoing Preparations for Mars Swing-by

  • Could NASA Get To Pluto Faster? Space Expert Says Yes - By Thinking Nuclear
  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program

  • Hubble Probes Layer-Cake Structure Of Extra Solar Gas Giant Atmosphere
  • Strongest Winds On Earth Would Not Even Be A Breeze On These Planets
  • Gas Giants Jump Into Planet Formation Early
  • COROT On Its Way

  • Turning An Axel Mounted Molecular Wheel
  • Delft Nano-Detector Very Promising For Remote Cosmic Realms
  • Nano-particles Could Strangle Cancer Cells
  • Hybrid Structures Combine Strengths Of Carbon Nanotubes And Nanowires

  • South Korean Air Force Man To Join NASA Research Work
  • Air Force Rocket To Launch NASA Satellite
  • Crabs Give Blood For Space Travel
  • Medicine On The Final Frontier Is Studied

  • Sea Launch Zenit Explodes On Pad
  • Sea Launch Operations To Be Resumed Despite Liftoff Failure
  • SpaceWorks Engineering Releases Study On Emerging Commercial Transport Services To ISS
  • JOULE II Launches With Success At Poker Flat

  • Lockheed Martin Readies For Orion Crew Exploration Vehicle At Kennedy Space Center
  • Test Flights Of Angara Boosters To Start In 2010
  • India Delays Cryogenic Rocket Engine Test Two Weeks
  • Researchers Create New Class Of Compounds

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement