Moon News  
MOON DAILY
Additional Artemis I test objectives to provide added confidence in capabilities
by Staff Writers
Huntsville AL (SPX) Aug 05, 2022

Good file image.

During Artemis I, NASA plans to accomplish several primary objectives, including demonstrating the performance of the Orion spacecraft's heat shield from lunar return velocities, demonstrating operations and facilities during all mission phases from launch countdown through recovery, and retrieving the crew module for post-flight analysis.

As the first integrated flight of the Space Launch System rocket, Orion spacecraft, and the exploration ground systems at NASA's 21st century spaceport in Florida, engineers hope to accomplish a host of additional test objectives to better understand how the spacecraft performs in space and prepare for future missions with crew.

Accomplishing additional objectives helps reduce risk for missions with crew and provides extra data so engineers can assess trends in spacecraft performance or improve confidence in spacecraft capabilities. Some of the additional objectives planned for Artemis I include:

Modal survey
On the European-built service module, Orion is equipped with 24 reaction control system (RCS) thrusters, small engines responsible for moving the spacecraft in different directions and rotating it. The modal survey is a prescribed series of small RCS firings that will help engineers ensure the structural margin of Orion's solar array wings during the mission.

Flight controllers will command several small firings of the engines to cause the arrays to flex. They will measure the impact of the firings on the arrays and evaluate whether the inertial measurement units used for navigation are experiencing what they should. Until the modal survey is complete, large translational burns are limited to 40 seconds.

Optical navigation camera certification
Orion has an advanced guidance, navigation, and control (GN&C) system, responsible for always knowing where the spacecraft is located in space, which way it's pointed, and where it's going. It primarily uses two star trackers, sensitive cameras that take pictures of the star field around Orion, the Moon, and Earth, and compares the pictures to its built-in map of stars.

The Optical navigation camera is a secondary camera that takes images of the Moon and Earth to help orient the spacecraft by looking at the size and position of the celestial bodies in the image. At several times during the mission, the optical navigation camera will be tested to certify it for use on future flights. Once certified, the camera also can help Orion autonomously return home if it were to lose communication with Earth.

Solar array wing camera Wi-Fi characterization
The cameras affixed to the tips of the solar array wings communicate with Orion's camera controller through an on-board Wi-Fi network. Flight controllers will vary the positioning of the solar arrays to test the Wi-Fi strength while the arrays are in different configurations. The test will allow engineers to optimize how quickly imagery taken by cameras on the ends of the arrays can be transmitted to onboard recorders.

Crew module/service module surveys
Flight controllers will use the cameras on the four solar array wings to take detailed photos of the crew module and service module twice during the mission to identify any micrometeoroid or orbital debris strikes.

A survey conducted early on in the mission will provide images soon after the spacecraft has flown beyond the altitude where space debris resides and a second survey on the return leg will occur several days before reentry.

Large file delivery protocol uplink
Engineers in mission control will uplink large data files to Orion to better understand how much time it takes for the spacecraft to receive sizeable files. During the mission, flight controllers use the Deep Space Network to communicate with and send data to the spacecraft, but testing before flight hasn't including using the network.

The test will help inform engineers' understanding of whether the spacecraft uplink and downlink capability is sufficient to support human rating validation of end-to-end communication prior to Artemis II, the first flight with astronauts.

Star tracker thermal assessment
Engineers hope to characterize the alignment between the star trackers that are part of the guidance, navigation and control system and the Orion inertial measurements units, by exposing different areas of the spacecraft to the Sun and activating the star trackers in the different thermal states.

The measurements will inform the uncertainty in the navigation state due to thermal bending and expansion which ultimately impacts the amount of propellant needed for spacecraft maneuvers during crewed missions.

Radiator loop flow control
Two radiator loops on the spacecraft's European Service Module help expel heat generated by different systems throughout the flight. There are two modes for the radiators. During speed mode, the radiator pumps operate at a constant speed to help limit vibrations and is the primary mode used during Artemis I and during launch for all Artemis flights. Control mode allows for better control of the radiator pumps and their flow rate, and will be used on crewed missions when more refined control of flow through the radiators is desired. This objective will test control mode to provide additional data about how it operates in space.

Solar array wing plume
Depending on the angle of Orion's solar array wings during some thruster firings, the plume, or exhaust gasses, from those firings could increase the arrays' temperature. Through a series of small RCS firings, engineers will gather data to characterize heating of the solar array wings.

Propellant slosh
Liquid propellant kept in tanks on the spacecraft moves differently in space than on Earth because of the lack of gravity in space. Propellant motion, or slosh, in space is hard to model on Earth, so engineers plan to gather data on the motion of the propellant during several planned activities during the mission.

Search acquire and track (SAT) mode
SAT mode is an algorithm intended to recover and maintain communications with Earth after loss of Orion's navigation state, extended loss of communications with Earth, or after a temporary power loss that causes Orion to reboot hardware.

To test the algorithm, flight controllers will command the spacecraft to enter SAT mode, and after about 15 minutes, restore normal communications. Testing SAT mode will give engineers confidence it can be relied upon as the final option to fix a loss of communications when crew are aboard.

Entry aerothermal
During entry of the spacecraft through Earth's atmosphere, a prescribed series of 19 reaction control system firings on the crew module will be done to understand performance compared to projected data for the sequence. Engineers are interested in gathering this data during high heating on the spacecraft where the aerothermal effects are largest.

Integrated Search and Rescue Satellite Aided Tracking (SARSAT) functionality

The SARSAT test will verify connectivity between beacons to be worn by crew on future flights and ground stations receiving the signal. The beacons will be remotely activated and powered for about an hour after splashdown and will also help engineers understand whether the signal transmitted interferes with communications equipment used during recovery operations, including Orion's built-in tri-band beacon which transmits the spacecraft's precise location after splashdown.

Ammonia boiler restart
After Artemis I splashdown, Orion's ammonia boiler will be turned off for several minutes then restarted to provide additional data about the system's capability. Ammonia boilers are used to help control the thermal aspects of the spacecraft to keep its power and avionics systems cool, and keep the interior of the crew module at a comfortable temperature for future crews.

In some potential contingency landing scenarios for crewed missions, crews may need to turn off the ammonia boiler to check for hazards outside the spacecraft, then potentially turn it back on to provide additional cooling.

Engineers will perform additional tests to gather data, including monitoring the heatshield and interior components for saltwater intrusion after splashdown. They also will test the GPS receiver on the spacecraft to determine the spacecraft's ability to pick up the signal being transmitted around Earth, which could be used to augment the spacecraft's ability to understand its positioning in the event of communications loss with mission controllers.

Collectively, performing additional objectives during the flight provides additional information engineers can use to improve Orion as NASA's spacecraft that will take humans to deep space for years to come.


Related Links
Artemis I at NASA
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MOON DAILY
'We're going;' NASA says its ready for Artemis I unmanned trip to moon
Washington DC (UPI) Aug 3, 2021
Sounding like an excited new parent, NASA Administrator Bill Nelson declared during a press briefing Wednesday that the agency's Artemis mission is ready to take its first physical steps to return to the moon and sometime later head to Mars. Laying out an effort that will include international and commercial partners, Nelson said Artemis I will take off for months-long orbiting around the moon to test its hardware and systems in the final preparation for a manned flight. Nelson, though, ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MOON DAILY
Rocky road ahead still not the good kind: Sols 3548-3550

Through the Pass We Go Sols 3551-3552

Ten Earth Years Later On Mars Sols 3553-3554

Images of EDL Debris

MOON DAILY
SwRI researcher shows how elliptical craters could shed light on age of Saturn's moons

MOON DAILY
Why Jupiter doesn't have rings like Saturn

You can help scientists study the atmosphere on Jupiter

SwRI scientists identify a possible source for Charon's red cap

NASA's Europa Clipper Mission Completes Main Body of the Spacecraft

MOON DAILY
3 in Blue Origin crew set new world records aboard New Shepard spaceflight

NewSpace may eliminate sun-synchronous orbits

ISS tests organisms, materials in space

Blue Origin to launch space tourist flight next week

MOON DAILY
Towards stable, sustained Raman imaging of large samples at the nanoscale

A mirror tracks a tiny particle

New silicon nanowires can really take the heat

Cooling speeds up electrons in bacterial nanowires

MOON DAILY
Virgin Galactic secures land for new astronaut campus and training facility

SpaceX debris discovered in Australian sheep paddock

Blue Origin sends first Egyptian and Portuguese nationals to space

SpaceX rocket fueled for launch this week to send Korean mission to moon

MOON DAILY
China launches six new satellites

China's Tianzhou-3 cargo craft re-enters atmosphere under control

Researchers: Chinese rocket stage to hit Earth in uncontrolled descent

New Chinese rocket makes debut flight

MOON DAILY
Quasar to deliver space data as a service

Space Operations Center lifts comms performance using ViaLite HWDR links

Madrid Flight On Chip project wraps up design process

SpaceX debris discovered in Australian sheep paddock









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.