A slightly younger Moon by Staff Writers Berlin, Germany (SPX) Jul 13, 2020
The Moon formed a little later than previously assumed. When a Mars-sized protoplanet was destroyed in a collision with the young Earth, a new body was created from the debris ejected during this catastrophe - the Moon. Planetary geophysicists at the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR), led by Maxime Maurice, together with researchers at the University of Munster have used a new numerical model to reconstruct the time at which the event occurred - 4.425 billion years ago. The previous assumptions about the formation of the Moon were based on an age of 4.51 billion years - that, is 85 million years earlier than the new calculations reveal. Four-and-a-half billion years ago, the Solar System was still a rather chaotic place. Earth was still growing to its present size, collecting matter in the form of what are referred to as 'planetesimals'. These had previously formed in the disc of dust and gas orbiting the early Sun. The young Earth consolidated, becoming ever hotter inside. Increasingly large parts of the rocky mantle melted and formed a magma ocean. It is at this time that Earth gained the natural satellite that continues to orbit around it to this day. A massive cosmic collision between Earth and a protoplanet resulted in rock being ejected from the young Earth. Eventually, this debris agglomerated to form a new planetary body - the Moon. In principle, most scientists agree about how the Moon formed, but not about the details of the process and especially not about the time at which it occurred. "The results of our latest modelling suggest that the young Earth was hit by a protoplanet some 140 million years after the birth of the Solar System 4.567 billion years ago," says Maxime Maurice, summarising the team's investigations. "According to our calculations, this happened 4.425 billion years ago - with an uncertainty of 25 million years - and the Moon was born." At that time, Earth had just developed into a planet. During this development, the heavy, metallic components sank to its centre and formed a core of iron and nickel, which was surrounded by a thick mantle of silicate rocks. The mantle rocks became hotter and hotter due to the process of 'accretion' - the agglomeration of matter - and through heat from the decay of radioactive elements. This allowed the separation of metals and silicates to take place in Earth's interior within a few tens of millions of years.
A planetary bullseye caused the formation of the Moon Theia, however, hit Earth and caused the ejection of such a large amount of material from the planet's mantle that the Moon was able to form from it. During this violent impact, a several thousand kilometre deep magma ocean of glowing hot, molten rock formed. Today, no traces of Theia remain following this collision. Reconstructing how the formation of the Moon was triggered by this event requires a great deal of imagination and creativity. The collision of the two bodies, with its enormous energy, also vaporised a large amount of rock from Earth's early mantle. This was ejected and collected in a ring of dust around Earth before it reassembled there to form rock. "From this, the Moon was formed in a short time, probably in just a few thousand years," explains Doris Breuer, Head of the Planetary Physics Department at the DLR Institute of Planetary Research and a co-author of the study.
The oldest Moon rock is not old enough "Our calculations show that this most likely happened at the very end of Earth's formation," says Sabrina Schwinger, another co-author of the study, describing the chronological sequence of events. It was not only Earth that had an ocean of magma in its early youth. Energy gained from accretion also led to the formation of a magma ocean on the Moon. The Moon melted almost completely and, similarly to Earth, was covered by a magma ocean over 1000 kilometres deep. This magma ocean quickly began to solidify and formed a crust of floating, lightweight crystals at the surface - its 'interface' with the cold space. But under this insulating crust, which slowed down the further cooling and solidification of the magma ocean, the Moon remained molten for a long time. Until now, scientists were unable to determine how long it took for the magma ocean to crystallise completely, which is why they could not conclude when the Moon originally formed. To calculate the lifetime of the Moon's magma ocean, the scientists used a new computer model, which for the first time comprehensively considered the processes involved in the solidification of the magma. "The results from the model show that the Moon's magma ocean was long-lived and took almost 200 million years to completely solidify into mantle rock," says Maxime Maurice. "The time scale is much longer than calculated in previous studies," adds DLR colleague Nicola Tosi, second author of the study and advisor of Maxime Maurice's PhD thesis, which was the base for this condensed scientific report. "Older models gave a solidification period of only 35 million years."
Solidification models reveal the age of the Moon and Earth "By comparing the measured composition of the Moon's rocks with the predicted composition of the magma ocean from our model, we were able to trace the evolution of the ocean back to its starting point, the time at which the Moon was formed," explains Sabrina Schwinger. The results of the study show that the Moon was formed 4.425+/-0.025 billion years ago. The Moon's exact age is in remarkable agreement with an age previously determined for the formation of Earth's metallic core with the uranium-lead method, the point at which the formation of planet Earth was completed. "This is the first time that the age of the Moon can be directly linked to an event that occurred at the very end of the Earth's formation, namely the formation of the core," says Thorsten Kleine from the Institute of Planetology at the University of Munster.
Research Report: "A long-lived magma ocean on a young Moon"
Nature of Enigmatic Substance Found on Far Side of the Moon Uncovered by Scientists Beijing (Sputnik) Jul 09, 2020 Despite the substance in question being described as "gel-like" shortly after its discovery, new research suggests that it is likely a rock after all. Chinese scientists have revealed the analysis of a strange substance that the Yutu-2 lunar rover discovered on the moon last year, space.com reports. The substance's discovery was made in July 2019 during the rover's effort to explore the far side of the moon as part of China's Chang'e-4 mission, with the Chinese-language science outreach publ ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |