Small Impacts Are Reworking Lunar Soil Faster Than Scientists Thought by Staff Writers Tempe AZ (SPX) Oct 14, 2016
The Moon's surface is being "gardened" - churned by small impacts - more than 100 times faster than scientists previously thought. This means that surface features believed to be young are perhaps even younger than assumed. It also means that any structures placed on the Moon as part of human expeditions will need better protection. This new discovery comes from more than seven years of high-resolution lunar images studied by a team of scientists from Arizona State University and Cornell University. The team is led by ASU's Emerson Speyerer, who is also the lead author of the scientific paper published October 13 in Nature. "Before the Lunar Reconnaissance Orbiter was launched in 2009, we thought that it took hundreds of thousands to millions of years to change the lunar surface layer significantly," Speyerer said. "But we've discovered that the Moon's uppermost surface materials are completely turned over in something like 80,000 years." The images used in the discovery come from the Lunar Reconnaissance Orbiter Camera (LROC) on NASA's Lunar Reconnaissance Orbiter spacecraft. LROC is run from the Science Operations Center on ASU's Tempe campus; the instrument's principal investigator is Mark Robinson, a professor in ASU's School of Earth and Space Exploration (SESE). Robinson is a co-author on the paper along with Reinhold Povilaitis and Robert Wagner, both SESE research specialists, and Peter Thomas of Cornell.
Before and After The number of new craters found by Speyerer and colleagues is greater than anticipated by standard impact-modeling rates used by lunar scientists. The discovery has the effect of giving lunar surface features younger ages. Theory says that a lunar geologic unit should accumulate a certain number of craters of a given size in a million years, for example. But if it turns out that impacts are making craters more quickly, then it takes less time to reach the benchmark number, and the geologic unit is in reality younger than theory predicts. "A higher rate of impacts on geologic units with ages assumed to be already young turn out in fact to be even younger than we previously thought," Speyerer said. However, to be certain, he said, LROC needs to continue taking images to verify the discovery and firm up the actual impact rate. "Measuring the recent impact rate was one of the important tasks that led NASA to fly the Lunar Reconnaissance Orbiter," Robinson said. Besides the value to scientists in pinning down surface ages, he noted there are also practical aspects. Any future human exploration of the Moon will involve supply structures, rockets, and other equipment being parked on the surface for long periods of time, even if living quarters are underground. Knowing the present-day rate of impacts will be important in planning to protect equipment left on the surface.
Zones of Disturbance While the pattern details are complex, the researchers found that an impact throws out several kinds of debris. Some of it lands nearby. But impacts also throw small amounts of debris in hyper-velocity jets at speeds of 16 kilometers (10 miles) per second. This material - vaporized and molten rock - shoots over the surface, disturbing the upper layer of lunar soil and changing its brightness. "In addition to the new impact craters and starburst debris patterns, we observed a surprising number of small surface changes which we call splotches," Speyerer said. While splotches lack the detectable rims that craters show, the team thinks the splotches are most likely caused by small impacts of material thrown from larger impacts. "We see dense clusters of splotches around new impact sites," he said. "This suggests that many splotches may be secondary effects caused by material thrown out from the primary impact event." From 14,000 pairs of before-and-after LROC images, the scientists identified more than 47,000 splotches. "We estimated their accumulation over time and measured their sizes," Speyerer said. "From this, we inferred how deeply each splotch dug up the surface. That gave us an estimate of how long it takes to effectively churn or 'garden' the upper few inches of lunar soil." The gardening time amounted to a geological eye blink: not millions of years, and not even hundreds of thousands of years. As Speyerer explains, "We found that 99 percent of the surface would be overturned by forming splotches after about 81,000 years."
Why the big difference in turnover time? Two additional findings come from revising the impact rate. First, remote sensing observations of the surface need to factor in a much higher turnover rate when looking at data from mineral-detecting X-ray and gamma-ray spectrometers, which probe this upper surface layer. Second, the churning rate will be important information for future planners of Moon bases. Surface assets will have to be designed to withstand the impacts of small particles traveling up to 500 meters per second, or 1,100 miles per hour. Looking to the future, NASA has recently approved the Lunar Reconnaissance Orbiter for a two-year extended mission, and LROC will continue to acquire valuable cratering observations. "As the mission goes on," Robinson said, "the odds increase for us to find the larger impacts that occur less frequently on the Moon. Such discoveries will let us better pin down the lunar impact rate and also better characterize the most common process that shapes planetary bodies across the solar system."
Related Links Arizona State University Mars News and Information at MarsDaily.com Lunar Dreams and more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |