Moon News  
MOON DAILY
Research details mineralogy of potential lunar exploration site
by Staff Writers
Providence RI (SPX) Mar 02, 2018

A new study shows four distinct compositional regions within and around the Moon's largest impact basin. The findings could help guide future exploration of the basin.

A detailed study of a giant impact crater on the Moon's far side could provide a roadmap for future lunar explorers.

The study, by planetary scientists from Brown University, maps the mineralogy of the South Pole-Aitken (SPA) basin, a gash in the lunar surface with a diameter of approximately 2,500 kilometers (1,550 miles). SPA is thought to be the oldest and largest impact basin on the Moon, and scientists have long had their eyes on it as a target for future lunar landers.

"This is a highly detailed look at the compositional structure of this huge impact basin using modern, cutting-edge data," said Dan Moriarty, a postdoctoral researcher at NASA's Goddard Space Flight Center who led the research while a doctoral student at Brown. "Given that it's such an important target for future exploration and perhaps returning a sample to Earth, we hope this will serve as a framework for more detailed study and landing site selection."

The study will be published in the Journal of Geophysical Research: Planets. A preprint version is available online.

The impact that created SPA is thought to have blasted all the way through the Moon's crust and into the mantle, which is part of the reason that scientists are so interested in it. Visiting SPA and grabbing a sample of that exposed mantle material could provide critical clues about the Moon's origin and evolution. A sample could also help scientists put a firm date on the impact. SPA is thought to be the Moon's oldest basin, so a firm date would be a key milestone in the timeline of lunar history as well as events affecting early Earth.

But in order to get the right samples, it's important to know the best spots to find them. That's what Moriarty and co-author Carle Pieters, a professor in Brown's Department of Earth, Environmental and Planetary Sciences, had in mind for this study. They used detailed data from Moon Mineralogy Mapper, a spectrometer that flew aboard India's Chandrayaan-1 spacecraft for which Pieters is principal investigator.

"Having global access with modern imaging spectrometers from lunar orbit is the next best thing to having a geologist with a rock hammer doing the field work across the surface." Pieters said. "Ideally, in the future we'll have both working together."

The research identified four distinct mineralogical regions that form a bullseye pattern within and around the basin. At the bulleye's center is a region of what appears to be deposits of volcanic material, a sign that the center of the basin may have been covered by a volcanic flow sometime soon after the SPA impact. That central region is surrounded by a ring of material dominated by magnesium-rich pyroxene, a mineral thought to be plentiful in the lunar mantle. Outside of that is a ring in which pyroxene mixes with the standard crustal rocks of the lunar highlands. Outside of that ring is the basin exterior, where the signatures of impact-related material disappear.

The findings have some interesting implications for SPA exploration, the researchers say. The research suggests, for example, that finding pristine mantle material in the middle of the basin might be a bit tricky because of the large volcanic deposit.

"That's a little bit counterintuitive," Moriarty said. "Typically the deepest excavation would be in the middle of the crater. But we show that the middle of SPA has been covered over by what looks like a volcanic flow."

So if you're looking for mantle, it might be wise to land in the ring surrounding the center, where what appears to be mantle material is highly concentrated.

But an ideal landing site, Moriarty says, might be a spot that has both mantle and volcanic material, because those volcanics are interesting in their own right. Their composition is a little different than that of other volcanic rocks found on the Moon, which suggests they have a unique origin.

"If these rocks are indeed volcanic, it means that there was a really interesting kind of volcanism happening at SPA," Moriarty said. "It could be related to the extreme geophysical environment that would have been in place during the formation of the basin. That would be really interesting to look at in more depth."

With that in mind, Moriarty says a good spot to land might be near the border of the volcanic center and the pyroxene ring. Another strategy could be to look for a spot where the volcanic material has been pierced by a subsequent impact. Moriarty and Pieters found several such craters in the volcanic patch where the pyroxene material has been re-excavated.

"We think going after both mantle and volcanics would make for a richer science return," Moriarty said.

Moriarty is hopeful that these findings will give mission planners something to think about. China is currently in the process of planning for a mission to SPA. The region has appeared repeatedly on NASA's "decadal survey" of planetary scientists, which is used to inform the agency's mission priorities.

"Impacts are the dominant process that drove solar system creation and evolution, and SPA is the largest confirmed impact structure on the Moon, if not the entire solar system," Moriarty said. "That makes it an important end member in understanding impact processes. We think this work could provide a roadmap for exploring SPA in more detail."

Research paper


Related Links
Brown University
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MOON DAILY
The moon formed inside a vaporized Earth synestia
Davis CA (SPX) Mar 01, 2018
A new explanation for the Moon's origin has it forming inside the Earth when our planet was a seething, spinning cloud of vaporized rock, called a synestia. The new model led by researchers at the University of California, Davis and Harvard University resolves several problems in lunar formation and is published Feb. 28 in the Journal of Geophysical Research - Planets. "The new work explains features of the Moon that are hard to resolve with current ideas," said Sarah Stewart, professor of Earth a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MOON DAILY
Life in world's driest desert seen as sign of potential life on Mars

Mars Odyssey Observes Martian Moons

Atacama Desert study offers glimpse of what life on Mars could look like

Dormant desert life hints at possibilities on Mars

MOON DAILY
Titan topographic map unearths cookie-cutter holes in moon's surface

Cassini finds Titan has 'sea level' like Earth

Giant Storms Cause Palpitations in Saturn's Atmospheric Heartbeat

Electrical and Chemical Coupling Between Saturn and Its Ring

MOON DAILY
Chasing a stellar flash with assistance from GAIA

The PI's Perspective: Why Didn't Voyager Explore the Kuiper Belt?

New Horizons captures record-breaking images in the Kuiper Belt

Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

MOON DAILY
ISS Expedition 54 crew land safely in Kazakhstan

Florida Poly developing Happy Suit for Astronauts

Shiseido researches stress in closed-off environments to simulate ISS conditions

Cosmonaut, two US astronauts return to Earth from ISS

MOON DAILY
Researchers invent light-emitting nanoantennas

Nanomushroom sensors: One material, many applications

USTC realizes strong indirect coupling in distant nanomechanical resonators

Scalable and cost-effective manufacturing of thin film devices

MOON DAILY
Russia's Energomash tests RD-180 engine made for US Atlas rocket

Arianespace Soyuz set to launch 4 more sats for SES O3b constellation

SLS Intertank loaded for shipment, structural testing

Space-X lobs Spanish military satellite into orbit

MOON DAILY
China speeds up research, commercialization of space shuttles

Long March rockets on ambitious mission in 2018

Chinese taikonauts maintain indomitable spirit in space exploration: senior officer

China launches first shared education satellite

MOON DAILY
Latest updates from NASA on IMAGE Recovery

Radioactive cylinder found on Lebanon coast: authority

Researchers demonstrate promising method for improving quantum information processing

Silk fibers could be high-tech 'natural metamaterials'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.