Subscribe free to our newsletters via your
. Moon News .




MOON DAILY
Moon's crust as fractured as can be
by Staff Writers
Boston MA (SPX) Sep 11, 2015


Researchers analyzed the gravity signatures of more than 1,200 craters (in yellow) on the far side of the moon. Image courtesy of the researchers.

Scientists believe that about 4 billion years ago, during a period called the Late Heavy Bombardment, the moon took a severe beating, as an army of asteroids pelted its surface, carving out craters and opening deep fissures in its crust. Such sustained impacts increased the moon's porosity, opening up a network of large seams beneath the lunar surface.

Now scientists at MIT and elsewhere have identified regions on the far side of the moon, called the lunar highlands, that may have been so heavily bombarded - particularly by small asteroids - that the impacts completely shattered the upper crust, leaving these regions essentially as fractured and porous as they could be. The scientists found that further impacts to these highly porous regions may have then had the opposite effect, sealing up cracks and decreasing porosity.

The researchers observed this effect in the upper layer of the crust - a layer that scientists refer to as the megaregolith. This layer is dominated by relatively small craters, measuring 30 kilometers or less in diameter. In contrast, it appears that deeper layers of crust, that are affected by larger craters, are not quite as battered, and are less fractured and porous.

Jason Soderblom, a research scientist in MIT's Department of Earth, Atmospheric and Planetary Sciences, says the evolution of the moon's porosity can give scientists clues to some of the earliest life-supporting processes taking place in the solar system.

"The whole process of generating pore space within planetary crusts is critically important in understanding how water gets into the subsurface," Soderblom says. "On Earth, we believe that life may have evolved somewhat in the subsurface, and this is a primary mechanism to create subsurface pockets and void spaces, and really drives a lot of the rates at which these processes happen. The moon is a really ideal place to study this."

Soderblom and his colleagues, including Maria Zuber, the E.A. Griswold Professor of Geophysics and MIT's vice president for research, have published their findings in the journal Geophysical Research Letters.

Changing porosity
The team used data obtained by NASA's Gravity Recovery and Interior Laboratory (GRAIL) - twin spacecraft that orbited the moon throughout 2012, each measuring the push and pull of the other as an indicator of the moon's gravity.

With the GRAIL data, researchers mapped the gravity field in and around more than 1,200 craters on the far side of the moon. This region, the lunar highlands, makes up the moon's most ancient, heavily cratered terrain.

They then carried out an analysis called a Bouger correction to subtract the gravitational effect of mountains, valleys, and other topology from the total gravity field. What's left is the gravity field beneath the surface, within the moon's crust.

"There's an assumption we do have to make, which is that there's no changes in the material itself, and that all of the bumps we're seeing [in the gravity field] are from changes in the porosity and the amount of air between the rock," Soderblom explains.

Soderblom calculated the gravity signatures in and around 1,200 craters on the far side of the moon, and compared the gravity within each crater with the gravity of the surrounding terrain, to determine whether an impact increased or decreased the local porosity.

Origin story
For craters smaller than 30 kilometers in diameter, he found impacts both increased and decreased porosity in the upper layer of the moon's crust.

"For the smallest craters that we're looking at, we think we're starting to see where the moon has gone through so much fracturing that it gets to a point where the porosity of the crust just stays at some constant level," Soderblom says. "You can keep impacting it and you'll hit regions where you'll increase porosity here and decrease it there, but on average it stays constant."

The researchers found that larger craters, which excavated much deeper into the moon's crust, only increased porosity in the underlying crust - an indication that these deeper layers have not reached a steady state in porosity, and are not as fractured as the megaregolith.

Soderblom says the gravity signatures of the larger craters in particular may provide insight into just how many impacts the moon, and other terrestrial bodies, sustained during the Late Heavy Bombardment.

"For the smaller craters, it's like if you're filling a bucket, eventually your bucket gets full, but if you keep pouring cups of water into the bucket, you can't tell how many cups of water beyond full you've gone," Soderblom says. "Looking at the larger craters at the subsurface might give us insight, because that 'bucket' isn't full yet."

Ultimately, tracing the moon's changing porosity may help scientists track the trajectory of the moon's impactors 4 billion years ago.

"What we really hope to do is to figure out the number of impacts in the range of 100 kilometers in diameter, and from that, we can extrapolate to the smaller craters, assuming different populations of impactors, and those different assumptions will tell us where the impactors came from," Soderblom says. "This will help to understand the origin of the Late Heavy Bombardment, and whether it was disrupted material from the asteroid belt, or if it was further out."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
Mars News and Information at MarsDaily.com
Lunar Dreams and more






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





MOON DAILY
China Plans Lunar Rover For Far Side of Moon
Moscow (Sputnik) Sep 09, 2015
China hopes to send a rover to the far side of the moon, which would be the first time humanity lands a lunar probe there, a scientist from the Chinese government's moon exploration department said Tuesday. The plan to land Chang'e-4 lunar probe on the far side of the moon could be realized before 2020, Zou Yongliao from the Chinese Academy of Sciences said at a deep-space exploration foru ... read more


MOON DAILY
One small step for man as astronaut controls robot from space

Opportunity Driving West To Reach New Rock Target

ASU instruments help scientists probe ancient Mars atmosphere

What Happened to Early Mars' Atmosphere

MOON DAILY
At Saturn, One of These Rings is not like the Others

Discovery of the Origin of Saturn's F Ring and Its Shepherd Satellites

Cassini's Final Breathtaking Close Views of Dione

Cassini to Make Last Close Flyby of Saturn Moon Dione

MOON DAILY
New Horizons Probes the Mystery of Charon's Red Pole

New Horizons Spacecraft begins Intensive Data Downlink Phase

New Horizons Team Selects Potential Kuiper Belt Flyby Target

Scientists study nitrogen provision for Pluto's atmosphere

MOON DAILY
China aims to land Chang'e-4 probe on far side of moon

China Plans Lunar Rover For Far Side of Moon

Russia Eyes Moon for Hi-Tech Lunar Base

Russia Gets Ready for New Moon Landing

MOON DAILY
Using DNA origami to build nanodevices of the future

Setting ground rules for nanotechnology research

Intractable pain may find relief in tiny gold rods

Record high pressure squeezes secrets out of osmium

MOON DAILY
Construction Begins on Test Version of Important Connection for SLS

NASA Funds Plasma Rocket Technology for Superfast Space Travel

Green Propellant Infusion Mission Receives Propulsion System

Need for Speed: Star Trek Warp Drive is Within Our Grasp

MOON DAILY
Progress for Tiangong 2

China rocket parts hit villager's home: police, media

China's "sky eyes" help protect world heritage Angkor Wat

China's space exploration potential has US chasing its own tail

MOON DAILY
ISS Crew Enjoy Kharcho Soup, Mare's Milk in Orbit

Russian ISS Crew's Next Spacewalk Planned for February 2016

Mogensen begins busy ISS tour

Soyuz rocket with three astronauts launches towards ISS




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.