Moon glows brighter than Sun in images from NASA's Fermi telescope by Francis Reddy for GSFC News Greenbelt MD (SPX) Aug 16, 2019
If our eyes could see high-energy radiation called gamma rays, the Moon would appear brighter than the Sun! That's how NASA's Fermi Gamma-ray Space Telescope has seen our neighbor in space for the past decade. Gamma-ray observations are not sensitive enough to clearly see the shape of the Moon's disk or any surface features. Instead, Fermi's Large Area Telescope (LAT) detects a prominent glow centered on the Moon's position in the sky. Mario Nicola Mazziotta and Francesco Loparco, both at Italy's National Institute of Nuclear Physics in Bari, have been analyzing the Moon's gamma-ray glow as a way of better understanding another type of radiation from space: fast-moving particles called cosmic rays. "Cosmic rays are mostly protons accelerated by some of the most energetic phenomena in the universe, like the blast waves of exploding stars and jets produced when matter falls into black holes," explained Mazziotta. Because the particles are electrically charged, they're strongly affected by magnetic fields, which the Moon lacks. As a result, even low-energy cosmic rays can reach the surface, turning the Moon into a handy space-based particle detector. When cosmic rays strike, they interact with the powdery surface of the Moon, called the regolith, to produce gamma-ray emission. The Moon absorbs most of these gamma rays, but some of them escape. Mazziotta and Loparco analyzed Fermi LAT lunar observations to show how the view has improved during the mission. They rounded up data for gamma rays with energies above 31 million electron volts - more than 10 million times greater than the energy of visible light - and organized them over time, showing how longer exposures improve the view. "Seen at these energies, the Moon would never go through its monthly cycle of phases and would always look full," said Loparco. As NASA sets its sights on sending humans to the Moon by 2024 through the Artemis program, with the eventual goal of sending astronauts to Mars, understanding various aspects of the lunar environment take on new importance. These gamma-ray observations are a reminder that astronauts on the Moon will require protection from the same cosmic rays that produce this high-energy gamma radiation. While the Moon's gamma-ray glow is surprising and impressive, the Sun does shine brighter in gamma rays with energies higher than 1 billion electron volts. Cosmic rays with lower energies do not reach the Sun because its powerful magnetic field screens them out. But much more energetic cosmic rays can penetrate this magnetic shield and strike the Sun's denser atmosphere, producing gamma rays that can reach Fermi. Although the gamma-ray Moon doesn't show a monthly cycle of phases, its brightness does change over time. Fermi LAT data show that the Moon's brightness varies by about 20% over the Sun's 11-year activity cycle. Variations in the intensity of the Sun's magnetic field during the cycle change the rate of cosmic rays reaching the Moon, altering the production of gamma rays.
India's moon-bound Chandrayaan-2 spacecraft set to leave Earth's orbit Washington DC (UPI) Aug 14, 2019 On Tuesday night, Chandrayaan-2 spacecraft will leave Earth's orbit and begin making its way toward the moon. Early Wednesday morning, after leaving Earth's orbit, engineers with the Indian Space Research Organization will direct the spacecraft to perform an important maneuver called Trans Lunar Insertion. The move will put the spacecraft on a trajectory that will put the probe into orbit around the moon on August 20. "Subsequently, we have planned to have a series of maneuvers around the mo ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |