Lunar dynamo's lifetime extended by at least 1 billion years by Jennifer Chu for MIT News Boston MA (SPX) Aug 14, 2017
New evidence from ancient lunar rocks suggests that an active dynamo once churned within the molten metallic core of the moon, generating a magnetic field that lasted at least 1 billion years longer than previously thought. Dynamos are natural generators of magnetic fields around terrestrial bodies, and are powered by the churning of conducting fluids within many stars and planets. In a paper published in Science Advances, researchers from MIT and Rutgers University report that a lunar rock collected by NASA's Apollo 15 mission exhibits signs that it formed 1 to 2.5 billion years ago in the presence of a relatively weak magnetic field of about 5 microtesla. That's around 10 times weaker than Earth's current magnetic field but still 1,000 times larger than fields in interplanetary space today. Several years ago, the same researchers identified 4-billion-year-old lunar rocks that formed under a much stronger field of about 100 microtesla, and they determined that the strength of this field dropped off precipitously around 3 billion years ago. At the time, the researchers were unsure whether the moon's dynamo - the related magnetic field - died out shortly thereafter or lingered in a weakened state before dissipating completely. The results reported support the latter scenario: After the moon's magnetic field dwindled, it nonetheless persisted for at least another billion years, existing for a total of at least 2 billion years. Study co-author Benjamin Weiss, professor of planetary sciences in MIT's Department of Earth, Atmospheric and Planetary Sciences (EAPS), says this new extended lifetime helps to pinpoint the phenomena that powered the moon's dynamo. Specifically, the results raise the possibility of two different mechanisms - one that may have driven an earlier, much stronger dynamo, and a second that kept the moon's core simmering at a much slower boil toward the end of its lifetime. "The concept of a planetary magnetic field produced by moving liquid metal is an idea that is really only a few decades old," Weiss says. "What powers this motion on Earth and other bodies, particularly on the moon, is not well-understood. We can figure this out by knowing the lifetime of the lunar dynamo." Weiss' co-authors are lead author Sonia Tikoo, a former MIT graduate student who is now an assistant professor at Rutgers; David Shuster of the University of California at Berkeley; Clement Suavet and Huapei Wang of EAPS; and Timothy Grove, the R.R. Schrock Professor of Geology and associate head of EAPS.
Apollo's glassy recorders Until recently, Weiss and others had been unable to find samples much younger than 3.2 billion years old that could accurately record magnetic fields. As a result, they had only been able to gauge the strength of the moon's magnetic field between 3.2 and 4.2 billion years ago. "The problem is, there are very few lunar rocks that are younger than about 3 billion years old, because right around then, the moon cooled off, volcanism largely ceased and, along with it, formation of new igneous rocks on the lunar surface," Weiss explains. "So there were no young samples we could measure to see if there was a field after 3 billion years." There is, however, a small class of rocks brought back from the Apollo missions that formed not from ancient lunar eruptions but from asteroid impacts later in the moon's history. These rocks melted from the heat of such impacts and recrystallized in orientations determined by the moon's magnetic field. Weiss and his colleagues analyzed one such rock, known as Apollo 15 sample 15498, which was originally collected on Aug. 1, 1971, from the southern rim of the moon's Dune Crater. The sample is a mix of minerals and rock fragments, welded together by a glassy matrix, the grains of which preserve records of the moon's magnetic field at the time the rock was assembled. "We found that this glassy material that welds things together has excellent magnetic recording properties," Weiss says.
Baking rocks They then exposed the rock to a known magnetic field in the lab, and heated the rock to close to the extreme temperatures in which it originally formed. They measured how the rock's magnetization changed as they increased the surrounding temperature. "You see how magnetized it gets from getting heated in that known magnetic field, then you compare that field to the natural magnetic field you measured beforehand, and from that you can figure out what the ancient field strength was," Weiss explains. The researchers did have to make one significant adjustment to the experiment to better simulate the original lunar environment, and in particular, its atmosphere. While the Earth's atmosphere contains around 20 percent oxygen, the moon has only imperceptible traces of the gas. In collaboration with Grove, Suavet built a customized, oxygen-deprived oven in which to heat the rocks, preventing them from rusting while at the same time simulating the oxygen-free environment in which the rocks were originally magnetized. "In this way, we finally have gotten an accurate measurement of the lunar field," Weiss says.
From ice cream makers to lava lamps Scientists have proposed that the moon's dynamo may have been powered by the Earth's gravitational pull. Early in its history, the moon orbited much closer to the Earth, and the Earth's gravity, in such close proximity, may have been strong enough to pull on and rotate the rocky exterior of the moon. The moon's liquid center may have been dragged along with the moon's outer shell, generating a very strong magnetic field in the process. It's thought that the moon may have moved sufficiently far away from the Earth by about 3 billion years ago, such that the power available for the dynamo by this mechanism became insufficient. This happens to be right around the time the moon's magnetic field strength dropped. A different mechanism may have then kicked in to sustain this weakened field. As the moon moved away from the Earth, its core likely sustained a low boil via a slow process of cooling over at least 1 billion years. "As the moon cools, its core acts like a lava lamp - low-density stuff rises because it's hot or because its composition is different from that of the surrounding fluid," Weiss says. "That's how we think the Earth's dynamo works, and that's what we suggest the late lunar dynamo was doing as well." The researchers are planning to analyze even younger lunar rocks to determine when the dynamo died off completely. "Today the moon's field is essentially zero," Weiss says. "And we now know it turned off somewhere between the formation of this rock and today."
Greenbelt MD (SPX) Aug 09, 2017 A novel mission concept involving two CubeSats connected by a thin, miles-long tether could help scientists understand how the Moon got its mysterious "tattoos" - swirling patterns of light and dark found at more than 100 locations across the lunar surface. NASA's Planetary Science Deep Space SmallSat Studies, or PSDS3, program recently selected a team at the Goddard Space Flight Center in ... read more Related Links Massachusetts Institute of Technology Mars News and Information at MarsDaily.com Lunar Dreams and more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |