Learning from lunar lights by Staff Writers Paris (ESA) Dec 10, 2018
Every few hours observing the Moon, ESA's 'NELIOTA' project discovers a brilliant flash of light across its surface - the result of an object hurtling through space and striking our unprotected rocky neighbour at vast speed. Based at the Kryoneri telescope of the National Observatory of Athens, this important project is now being extended to January 2021. Impact flashes are referred to as 'transient lunar phenomena', because although common, they are fleeting occurrences, lasting just fractions of a second. This makes them difficult to study, and because the objects that cause them are too small to see, impossible to predict. For this reason scientists are studying lunar flashes with great interest, not only for what they can tell us about the Moon and its history, but also about Earth and its future. By observing lunar impacts, NELIOTA (NEO Lunar Impacts and Optical TrAnsients) aims to determine the size and distribution of near-Earth objects (NEOs) - meteoroids, asteroids or comets. With this information, the risk these space rocks pose to Earth can be better understood.
The world's largest eye on the Moon The flashes of light caused by lunar impacts are far dimmer than the sunlight reflected off the Moon. For this reason, we can only observe these impacts on the Moon's 'dark side' - between New Moon and First Quarter, and between Last Quarter and New Moon. The Moon must also be above the horizon, and observations require a fast-frame camera, such as the Andor Zyla sCMOS used in the NELIOTA project. To date, in the 90 hours of possible observation time that these factors allowed, 55 lunar impact events have been observed. Extrapolating from this data, scientists estimate that there are, on average, almost 8 flashes per hour across the entire surface of the Moon. With the extension of this observing campaign to 2021, further data should improve impact statistics. The NELIOTA system is the first to use a 1.2 m-telescope for monitoring the Moon, and as such is able to detect flashes two magnitudes fainter than other lunar monitoring programs, which typically use 0.5 m-telescopes or smaller. Another unique feature of the NELIOTA project is its ability to monitor the Moon in two 'photometric bands', which recently enabled the first-ever refereed publication to determine the temperature of lunar impact flashes - ranging from 1300 C to 2800 C.
A modern approach to an ancient phenomenon While our planet has lived with the risk, and reality, of bombardment from objects in space for as long as it has been in existence, we are now able to monitor our skies with more accuracy than ever before. The NELIOTA project relies on funding from ESA's Science programme, and is one exciting part of ESA's Space Situational Awareness programme, which is building infrastructure in space and on the ground to improve our monitoring and understanding of potential Earth hazards. The programme is currently in the process of setting up a network of Flyeye telescopes across the globe, to scan the skies for risky asteroids, including those that could hit the Moon. In the future, ESA will move towards mitigation and active planetary defence, and is currently planning the ambitious Hera mission to test asteroid deflection.
China Will Launch First Probe to Moon's Far Side Later This Week Beijing (Sputnik) Dec 05, 2018 On December 8, China's space agency will launch the Chang'e-4 probe, the first to visit the surface of the far side of the moon. The China National Space Administration (CNSA) has been setting the stage for a number of remote lunar operations, launching the Queqiao communications satellite to an orbit on the far side of the moon this past May and planning out its new Long March 9 heavy lifting rockets. Now, the space agency is ready to take the next step by sending the Chang'e-4 probe to Earth's n ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |