Five Teams Win NASA DALI Awards to Advance Future Lunar Missions by Lori Keesey for GSFC News Greenbelt MD (SPX) Feb 28, 2019
When NASA solicits future investigations of the Moon five teams involving scientists and engineers at the NASA Goddard Spaceflight Center in Greenbelt, Maryland, will be ready. The agency's Development and Advancement of Lunar Instrumentation, or DALI, program recently awarded 10 teams funding to mature spacecraft-based instruments for use in future lander missions, including those offered by commercial ventures through the Commercial Lunar Payload Services (CLPS) contract. These instruments are expected to reach a high level of technology readiness by the time funding ends in three years. Of the 10 awards, half went to teams involving Goddard experts, who are either serving as principal investigators or co-investigators - a success rate that didn't escape many. "The fact that our scientists and engineers won five of those awards bodes well and assures that Goddard will have a role to play in NASA's new era of exploration," said Brook Lakew, associate director for planning and R and D for Goddard's Solar System Exploration Division. "Our teams certainly made an admirable showing in this round of the DALI competition."
Submillimeter Solar Observation Lunar Volatiles Experiment (SSOLVE) With its two spectrometers tuned to submillimeter and terahertz wavelengths ideal for detecting water, SSOLVE would be deployed on a lander, where it would use the Sun as a light source to illuminate the presence of water in the Moon's tenuous atmosphere, specifically measuring the abundances and the chemical state of water, hydroxyl, and heavy water and how these levels vary over time. The goal is to answer questions about its presence both in the atmosphere and at the poles, determining if solar wind or meteoroids deliver the water or if it's created indigenously through different chemical processes involving the Sun.
Characterization of Regolith and Trace Economic Resources (CRATER) Conceived as a lander-payload instrument, CRATER would produce high-resolution spectra that would provide insights into how the Moon formed. It would also catalog non-native organic compounds and prospect for valuable metals, such as titanium, iron, chromium, and copper.
Bulk Elemental Composition Analyzer (BECA) Conceived by Goddard Principal Investigator Ann Parsons, BECA would pulse neutrons into the regolith. When these neutrons interacted with an element's nucleus, the nucleus would become excited and emit gamma rays, which a spectrometer would detect to reveal the presence of elements, including hydrogen, oxygen, aluminum, silicon, titanium, and iron, among many others. The beauty of BECA is that it does its sleuthing without moving parts and does not physically interact with the lunar terrain when gathering measurements. Furthermore, low-energy neutrons are also emitted by the lunar surface. Measurements by BECA's neutron detectors would allow for more sensitive and deeper measurements of hydrogen - an important ingredient in water -than from gamma rays alone.
Potassium-Argon Laser Experiment (KArLE) Knowing the precise ages afforded through potassium-argon dating - the method of determining a rock's time of origin by measuring the ratio of radioactive potassium to its daughter product, argon - would help scientists understand the Moon's history, its formation, the effects of bombardment, and by extension, the history of the solar system. Currently, radiometric dating can only be done on samples returned to Earth-based laboratories. "A capability such as KArLE is crucial because we can't possibly bring back samples from everywhere on the Moon," said Cohen, whose team includes several Goddard engineers, the University of Maryland, Los Alamos National Laboratory, and Honeybee Robotics.
Lunar Environment Monitoring Station (LEMS) Like many of the other DALI proposals, it, too, takes advantage of heritage instruments. It employs CubeSat and SmallSat subsystems that would generate and distribute power to the station's neutral mass spectrometer, which is identical in design to the one flown on NASA's Lunar Atmosphere Dust and Environment Explorer and the Mars Atmosphere and Volatile Evolution Mission, said Co-Investigator Charles Malespin, a Goddard scientist assisting in the effort led by Mehdi Benna, a researcher at the University of Maryland-Baltimore County. For more Goddard technology news, go here
NASA selects experiments for possible lunar flights in 2019 Washington DC (SPX) Feb 22, 2019 NASA has selected 12 science and technology demonstration payloads to fly to the Moon as early as the end of this year, dependent upon the availability of commercial landers. These selections represent an early step toward the agency's long-term scientific study and human exploration of the Moon and, later, Mars. "The Moon has unique scientific value and the potential to yield resources, such as water and oxygen," said NASA Administrator Jim Bridenstine. "Its proximity to Earth makes it especially ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |