Earth's Oldest Rock Found on the Moon by Staff Writers Columbia MD (SPX) Jan 25, 2019
Scientists discover what may be Earth's oldest rock in a lunar sample returned by the Apollo 14 astronauts. The research about this possible relic from the Hadean Earth was published in the journal Earth and Planetary Science Letters. An international team of scientists associated with the Center for Lunar Science and Exploration (CLSE), part of NASA's Solar System Exploration Research Virtual Institute, found evidence that the rock was launched from Earth by a large impacting asteroid or comet. This impact jettisoned material through Earth's primitive atmosphere, into space, where it collided with the surface of the Moon (which was three times closer to Earth than it is now) about 4 billion years ago. The rock was subsequently mixed with other lunar surface materials into one sample. The team developed techniques for locating impactor fragments in the lunar regolith, which prompted CLSE principal investigator Dr. David A. Kring, a Universities Space Research Association (USRA) scientist at the Lunar and Planetary Institute (LPI), to challenge them to locate a piece of Earth on the Moon. Led by research scientist Jeremy Bellucci and Professor Alexander Nemchin, team members working at the Swedish Museum of Natural History and Curtin University in Australia rose to the challenge. The result of their investigation is a 2 gram fragment of rock composed of quartz, feldspar, and zircon, all commonly found on Earth and highly unusual on the Moon. Chemical analysis of the rock fragment shows it crystallized in a terrestrial-like oxidized system, at terrestrial temperatures, rather than in the reducing and higher temperature conditions characteristic of the Moon. "It is an extraordinary find that helps paint a better picture of early Earth and the bombardment that modified our planet during the dawn of life," says Dr. Kring. It is possible that the sample is not of terrestrial origin, but instead crystallized on the Moon, however, that would require conditions never before inferred from lunar samples. It would require the sample to have formed at tremendous depths, in the lunar mantle, where very different rock compositions are anticipated. Therefore, the simplest interpretation is that the sample came from Earth. The team's analyses are providing additional details about the sample's history. The rock crystallized about 20 kilometers beneath Earth's surface 4.0-4.1 billion years ago. It was then excavated by one or more large impact events and launched into cislunar space. Previous work by the team showed that impacting asteroids at that time were producing craters thousands of kilometers in diameter on Earth, sufficiently large to bring material from those depths to the surface. Once the sample reached the lunar surface, it was affected by several other impact events, one of which partially melted it 3.9 billion years ago, and which probably buried it beneath the surface. The sample is therefore a relic of an intense period of bombardment that shaped the solar system during the first billion years. After that period, the Moon was affected by smaller and less frequent impact events. The final impact event to affect this sample occurred about 26 million years ago, when an impacting asteroid hit the Moon, producing the small 340 meter-diameter Cone Crater, and excavating the sample back onto the lunar surface where astronauts collected it almost exactly 48 years ago (January 31 to February 6, 1971). Kring suspects the conclusion of a terrestrial origin for the rock fragment will be controversial. While the Hadean Earth is a reasonable source for the sample, a first find of this kind may be a challenge for the geologic community to digest. He notes that samples of Hadean Earth certainly peppered the lunar surface; other samples will likely be found with additional study.
Research Report: "Terrestrial-like Zircon in a Clast from an Apollo 14 Breccia," J. J. Bellucci et al., 2019 Jan. 24, Earth and Planetary Science Letters
Compete in a lunar economy Paris (ESA) Jan 21, 2019 Sign up to the Metalysis-ESA Grand Challenge worth euro 500 000 rewarding innovation that helps us to explore space. As ESA and other agencies prepare to send humans back to the Moon - this time to stay - technologies that make use of materials available in space (in-situ resource utilisation) are seen as key to sustainability, and a stepping stone in humankind's adventure to Mars and farther into the Solar System. ESA is encouraging European industry to invest in the development of optimis ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |